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It has been noted that at high energy the Ricci scalar is manifested in two different 
ways, as a matter field as well as a geometrical field (which is its usual nature 
even at low energy). Here, using the material aspect of the Ricci scalar, its 
interaction with Dirac spinors is considered in four-dimensional curved space- 
time. We find that a large number of fermion-antifermion pairs can be produced 
by the exponential expansion of the early universe. 

1. I N T R O D U C T I O N  

Einstein's theory of  gravity is successful at low energy (long distances), 
but, at high energy (short distances), this theory is problematic in two ways: 
(1) it is nonrenormalizable and (2) Einstein's field equations exhibit solutions 
having pointlike singularities (Hawking and Penrose, 1970), where physical 
laws collapse. So Einstein's theory needs a modification at high energies. 

In this connection, there have been efforts to study higher derivative 
gravity (Utiyama and DeWitt, 1962; Stelle, 1977; Fradkin and Tseylin, 1982; 
Avramidy and Barvinsky, 1985; Parker and Toms, 1984; Buchbinder et al., 
1992; Srivastava and Sinha, 1993, 1994), which incorporates the principle 
of general covariance, the most basic principle of  the general theory of  
relativity. Higher derivative gravity is obtained by adding higher order terms 
in R (the Ricci scalar) such as R 2, R ~ R  ~v (R~v are the components of the 
Ricci tensor), R ~ R  ~vp~ (R~p~ are the components of  the Riemann curvature 
tensor), R 3, etc., to the Einstein-Hilbert  Lagrangian which is linear in R. It 
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is not always necessary to add terms like R~v R ~ and R~po R ~~ Some authors 
have taken a Lagrangian containing second- or higher order polynomials of 
R (Whitt, 1984; Barrow and Cotsakis, 1988, 1991). According to the definition 
of the Ricci scalar R, it contains the second-order derivative and the square 
of the first-order derivative of the components of the metric tensor with 
respect to space-time coordinates. The components of the metric tensor g ~  
are defined by 

ds 2 = g~ dx~ dx �9 (1.1) 

which shows that the g ~  are dimensionless. Hence, on adopting natural units 
(h = c = kB = 1, where h, c, and kB have their usual meanings), one finds 
the dimension of R as [mass] 2. So, if the Lagrangian contains R2-terms, 
coupling constants will remain dimensionless in 4-dimensional space-time. 
But if higher order terms of R (higher than R 2) are present in the Lagrangian, 
to maintain the dimensionless property of the action (the action has the same 
dimension as h, which is dimensionless in natural units), either coupling 
constants acquire dimension or the dimension of space-time is higher than 
4. In such cases, the theory is not renormalizable. But this does not mean 
that the theory will be uninteresting. Many interesting results can be derived 
even from a nonrenormalizable theory of gravity (Barrow and Cotsakis, 1988, 
1991). Here we shall take the action for R2-gravity to be 

S g = I d 4 x ( - g ) ' t 2 ( 1 - ~ G + b R 2 + c R ~ R ~ + d R ~ R ~ ' ~  ) (1.2) 

where G is the gravitational constant of dimension [mass]-2 (which is often 
taken equal to the Newtonian. gravitational constant, GN ~-- Mp  -2, where Mp 
is the Planck mass), the coupling constants b, c, and d are dimensionless, 
and g is the determinant of g~v. 

It is important to mention here that higher derivative theories of gravity 
are not unitary within usual perturbation theory. In the perturbative approach, 
analysis of the theory at the quantum level starts with the expansion of 
components of the metric tensor g ~  around the flat background space-time 
with components of the Minkowskian metric tensor ~q~. Later, modifying 
the theory by the Faddeev-Popov method (Buchbinder et al., 1992), the 
kinetic energy matrix for h~,~ = (16~rG)-l/2(g~ - xl~) is obtained which 
yields the Feynman propagator for h~. This tree-level propagator contains 
some terms corresponding physically to massive tachyonic ghosts. But this 
kind of problem is not expected in a nonperturbative approach. 

In our earlier work (Srivastava and Sinha, 1993, 1994) as well as in the 
present paper, without expanding g ~  around fiat background space-time 
(without using a perturbative approach), we discuss the theory of higher 
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derivative gravity. Moreover, the g ~  are treated as classical fields. So, the 
problem of nonunitarity does not arise here. We have noted that at high 
energy the Ricci scalar R manifests itself in two different ways: (1) as a 
spinless matter field and (2) as a geometrical field (which is its usual role 
in gravitational theories), whereas it behaves only as a geometrical field at 
low energy. In quantum field theory, fields are treated as physical concepts 
describing elementary particles. So, particles described by the material aspect 
of the Ricci scalar are hereafter called riccions (which are new particles, 
different from gravitons, in the scenario of pure gravitational theories). Here, 
we obtain the Klein-Gordon equation for R in curved spaces, which is 
expected to provide a physically reasonable propagator like other scalar fields 
in curved spaces, without any ghost term breaking unitarity of the theory. In 
Section 2 we discuss the condition for riccions not to behave like tachyons. 
However, in the present paper the problem addressed is different. From 
dimensional considerations, the material aspect of R is represented by/~ = 
"qR (where ~q is a number of unit magnitude and the dimension of length, to 
have the mass dimension of R equal to one, like other scalar fields in natural 
units). Thus, riccions are massive spinless particles, whereas gravitons are 
supposed to be massless spin-2 particles. 

In the present paper, we are interested in the interaction of/~ with Dirac 
spinor t~. We consider the case when /~ undergoes spontaneous symmetry 
breaking (under a temperature-dependent Higgs-like potential) (Srivastava 
and Sinha, 1993) leading to a phase transition from the state/~ = 0 to IRI 
-- 1 2 T2)lr2, - ~-(Tc - where T (T~) is the temperature (critical temperature). The 
interaction term in the action for ~ is taken as g/~t~O (which is the Yukawa 
coupling of R and ~ with g a constant). The term �89 also behaves like 
a mass term of ~ which vanishes at T = T~, but acquires more and more 
mass as T falls below T~. When T < < T~, the mass term for 0 is �89 
The main focus in this paper lies in the study of the production of spin-�89 
particles as a result of a Yukawa coupling of spinors with/~. It is found that 
a large number of Dirac particles are produced as a result of interaction of 
spinors with/~ during the exponentially expanding phase of the early universe 
caused by spontaneous symmetry breaking when /~ acquires the constant 
value �89 at T < <  T~. 

The paper is organized as follows. Section 2 contains a brief review of 
our earlier work (Srivastava and Sinha, 1993), where the dual role of Ricci 
scalar was discussed and the exponentially expanding model of the early 
universe was derived after spontaneous symmetry breaking. In Section 3, 
interaction of riccions and spin-�89 fermions is introduced and the resulting 
Dirac equation is derived. In Section 4, the Dirac equation is solved. Section 
5 is the concluding section, where the production of particles and its cosmolog- 
ical implications are discussed. Natural units are used throughout the paper. 
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2. DUAL ROLE OF RICCI SCALAR AT HIGH ENERGY 

In earlier papers (Srivastava and Sinha, 1993, 1994), we showed, using 
the generalized Gauss-Bonnet theorem, which states that in a four-dimen- 
sional space-time 

f d4x - + R z) (-g)ll2(R~.vp,~Rr 4R~.,,R r 

is a topological invariant (Birrell and Davies, 1982) and is equal to X (the 
Euler number), that the action for gravity (1.2) reduces to 

f ( R +oLR~.,,RO"+13R2)+X (2.1) S~ = d4x (_g)la 167rG 

where et and 13 [being linear combinations of the coupling constants b, c, 
and d used in the action (1.2)] are dimensionless coupling constants. 

Before going into further details, it is important to see the relative 
dominance between R and R 2 terms. In natural units, in terms of mass scale, 
(16"rrG)-IR corresponds to [16"rr( GIGo)]-I M~M = and (etR~R ~ + 13R 2) cor- 
responds to (a + 13)M 4. So, it is found that when M > [16"rr(et + 13) 
(GIGo)]-lCeMp, R 2 terms will dominate over the linear term (16-rrG)-IR 
and (16~rG)-IR will dominate over R 2 terms when M < [16~r(a + 13)(GI 
G0)]-It2Mp. At energy mass scales M < <  [161r(et + 13)(GIGo)]-IraMp, R 2 
terms will be almost insignificant compared to the Einstein-Hilbert term 
(16-trG)-IR. In other words, at sufficiently low energy, Einstein's theory of 
gravity will take over R 2 gravity. But, as discussed above, R 2 terms are very 
important at high energy ~ d  play a very important role in the theory of 
gravity. Thus the above modification to Einstein's theory of gravity is relevant 
at high energy only. 

The invariance of Sg given by equation (2.1) yields, under the transforma- 
tion g~'~ --+ gt,~ + 8g~, the field equations 

+ 2R~R,~ - ~ g~,,R'~SR.~8 + [3 2R:~ - 2g~[-]R - ~ g~R 2 

+ 2RR~) = 0 (2.2) 

where the semicolon denotes the covariant derivative and [~R = R:~:w Taking 
the trace of these field equations, we obtain the Klein-Gordon equation for 
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R in curved space-time, given as (Fradldn and Tseylin, 1982; Avramidy and 
Barvinsky, 1985; Srivastava and Sinha, 1993, 1994; Mayer and Schmidt, 
1993) 

([~ + m2)R = 0 (2.3a) 

where 

m 2 = [8arG(5ot + 1213)] -1 (2.3b) 

It is interesting to observe from equations (2.3) that the Ricci scalar R 
behaves like a spinless matter field with mass given by (2.3b). Here m is 
real and nondivergent which is possible only when (5ct + 1213) > 0, leading 
to either of  the three cases (I) tx > 0, 13 > 0, (2) et < 0, 13 > (5/12)1ctl, 
and (3) ot > (12/5)1131, 13 < 0. Thus, to make the theory free from tachyon 
ghosts, we can impose any one of three constraints on the dimensionless 
coupling constants ct and 13. Only on knowing explicit values of et and 13 
can one decide which constraint will be suitable for the theory. Mayer and 
Schmid (1993) have called R a "spinless graviton." Here, as mentioned above, 
we call/~ = "qR a r icc ion .  

Multiplying (2.3a) by "q, we obtain 

(1--1 + m2)/? = 0 (2.4a) 

with m defined by (2.3b). Equation (2.4a) can also be derived from the action 

if S~ = ~ d4x  (_g)ta(g~V 0~ 0~ - m2R 2) (2.4b) 

demanding its invariance with respect to the transformation R --->/~ + 8/?. 
In the action given by (2.4b), �89 2 is the potential term. If we accept/? as 
a spinless matter field, in principle, we can also use a temperature-dependent 
Higgs-like potential for/?  (like other scalar matter fields) as 

1 (~  T2) 1 1 ar2T4 (2.5) VT(R) -- - ~ m  2 R 2 -I- ~ -I- ~. /~4 d- ~ kT2]~ 2 - ~-~ 

in place of 1_2z52 ~,,t ,a in (2.4b). In (2.5), h is a dimensional coupling constant 
and T is the temperature. As a result, the invariance of the action 

= fd4x  ]  26a, 
under the transformation R ~ / ?  + ~/? leads to 

aV r 1 
= - ~  - m2R - h[~ 3 - -~ h T 2 R  (2.6b) 
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Though Vr(/~) can be written for/~ after accepting it as a spinless matter 
field at high energy level, one may ask whether it is possible to write a higher 
derivative gravitational action leading to (2.6b) in the way in which Sg given 
by (2.1) leads to (2.3a). The answer to this question is provided by the action 
S~ given as 

S'g = f d4x (-g)lt2[ - R'-'~16-trG + 18 hT2(5et + 1213)R 

+ ~ + 13R2 - h'q2(5ot2 + 1213)R3 ] (2.6c) 

We now demonstrate that the gravitational action S~ given by (2.6c) 
leads to (2.6b). Invariance of S~ given by (2.6c) under the transformation g ~  

g ~  + ~g~ yields the field equations 

1 R 

( 1 1 ) 
+ a t~:~, - [S]R~,, - ~ g~,~ [[]R + 2R~R~,~ - ~ gr 

( 1 ) 
+ 13 2R;~ - 2g~  DR - "~ g ~ R  2 + 2RR~ 

( 1 ) 
- h~lZ(5~2 + 1213) 6 R ~  - 6g~  I--']R 2 - -~ g ~ R  3 + 3R2R~ = 0 

On taking the trace of these equations, we find the equation 

[ ~  = m 2 - ~ hT z /~ - + 18h~ 3 V-1/~ 2 (2.6d) 

As [ ~ 2  is a total divergence, we have 

f d4x (_g)l /2 l--JR 2 = 0 

which yields 

I d4x (_g)u2 [~R 2 _ 0 g ~  ~g~ 

implying that 
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[SIR 2 = 0 (2.6e) 

Using (2.6e) in (2.6d), we obtain (2.6b) from the action (2.6c). 
If  the cosmological model of the early universe is spatially homogeneous 

and isotropic, it can be given by the line element 

ds z = dt a - aZ(O(dx 2 + dy z + dz z) (2.7) 

showing the flatness of t = const hypersurface. 
The four components of the timelike vector u ~ are normalized as 

u~ur = +1 (2.8) 

The components of energy-momentum tensor for/~ can be derived from the 
action with a potential term V r using the definition 

2 ~sR 

As a result, we obtain components of the energy-momentum tensor for/~ as [1 ] 
- 2~qR~ ~ + 2"qm~/),R~,~ - 2"qk/~R~ 

I 2- 
- -~ "qkT RR w, + 4xlm2R.r - 4"qm2g,~, 

- 4"qh/~3~,, + 4-qkgr 

In the case of other scalar fields 

contains some other terms in addition 
due to the dependence of/~ on gr 

[-1R - hT2g;~v + hT2gu,,, I--qR (2.9) 

~b, with Lagrangian density ~s = �89 
- g~.~.  The T~v for R given by (2.9) 
to O~,/~ O,/~ - g~,[�89 c9~  - Vr(/~)], 

Now, using equations (2.8) and (2.9), we obtain 

1 
u~u~T~ = u~u ~ cgr O,R - ~ O"R O ,k  + Vr(/~) 

+ u~u"( -2"qR~ ~ + 2~lm2p~R~ - 2 ~ 1 ~ 3 R ~  

1 .qhT2~R~., ' + 4,qm2~;~, _ 4.qm2g~.,, [S]R 
2 

- 4"rlkR3~,, + 4"qkg~,, [ i ~  3 - hT2Rw.,, + hT2g~,, IS]R) 

where u~ ------- (1, 0, 0, 0) in comoving coordinates. 

(2.10) 
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Taking the matter aspect of/~, one can discuss spontaneous symmetry 
breaking. The vacuum state is given by 

OV r 
- 0  

aft 

or 

--m2/~ + h/~ 3 + ~ / ~ T  2 = 0 ( 2 . 1 1 )  

The turning points of V r are given by 

/~=0 

1 T2),/2 = - 

( 2 . 12a )  

(2.12b) 

where 

2m 
Tc = ~ (2.13) 

Thus at/~ = 0, when T ~> To one finds from equation (2.10) 

T~vu~u ~ < 0 (2.14) 

which means that the energy condition is violated at temperature T ~> T~. 
Moreover, Einstein's theory has been modified. So, according to the 
Hawking-Penrose theorem (Hawking and Penrose, 1970), the cosmological 
model [given by the line element (2.7)] should be singularity-free. This 
implies that at t = 0, the cosmological model should bounce (Srivastava and 
Sinha, 1993). 

In the model given by (2.7) the geometrical definition of/~ yields 

where a dot denotes derivative with respect to time t. 
Now, in the state/? = 0, one obtains an ordinary differential equation 

a 
- -  + = 0 ( 2 . 1 6 )  a 

where a prime denotes derivative with respect to t/tp (tp is the Planck time). 
The ordinary differential equation (2.16) integrates to 
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a 2 = a~ + t (2.17) 
tp 

where a(t = O) = ao 4: O. Thus, in the state R = 0, the model of the early 
universe will expand as (a 2 + t[tp) 112. As this expansion is adiabatic, entropy 
will remain conserved. So, the temperature will fall as (a~ + tltp)-u2. When 
the temperature is sufficiently lower than T~,/~ will acquire a constant value 
/~ such that 

1 
= I cl = rc (2.18) 

In this state, we get the differential equation 

a '+ /aal (2.19) 

yielding the solution (Srivastava and Sinha, 1993) 

a = ar sinh in (t - to) ~ + 0.89 (2.20) 

where ac = (24/~T~) u4 and t~ is the time when I/~1 acquires a constant value 

I cl 
When t > tc - 0.89(6~/~) In, a(t) asymptotically approaches 

a ~ a~ exp[(t - t~)(TJ24xl)] (2.21) 

3. INTERACTION OF RICCIONS AND SPIN -1 F E R M I O N S  

The manifestation of the dual nature of the Ricci scalar at high energy 
encourages one to study the effect of interaction of  riccions with spin-�89 
particles, which form an important class of elementary particles. We take the 
complete action for the theory as 

S =  I f d4 x (_~)l/2[g~V 01L~ Ov A _ VT(/~)] 

+ ~ d4x (-g)~n[~itNJ - g~q~  + complex conjugate] (3.1) 

where ~ = qj,~0, D = ",/~(0~ - F~) ('y~ are Dirac matrices in curved space- 
time) (Srivastava, 1989), and 

--_ p (r v~b~a 1 (O~hP + F~ha)g~phb~l ~ (3.2) Fr 4 
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In (3.2), Fg~ are affine connections and ~'~ (a = 0, 1, 2, 3) are Dirac matrices 
in flat space-time satisfying the anticommutation rule 

{~1 a, ~1 b } = 2"q ab (3.3) 

where Xl "b ------ diag(l, - 1 ,  - 1 ,  - 1 ) .  The orthonormal tetrad components are 
defined as 

h~hbg~ = Xl~b (3.4) 

With the help of  the tetrad components h~, one can relate ~/~ and ~/" as 

~/~ = h~,r/" (3.5) 

satisfying the anticommutation relation 

{ ~ ,  ~ } = 2 g ~  (3.6) 

Imposing the condition 

2 8S 
- 0  

(_g)l:2 8~ 

we get the Dirac equation for q~ as 

i~/~D~b - gR~b = 0 (3.7) 

The geometry of  the model under consideration is given by the line element 
(2.7), which is rewritten in terms of conformal time 

i t  dt' (3.8) 
"r = a(t') 

as  

ds 2 = A2(,r)(d,r 2 - dx2 - dy 2 - dz 2) 

As a result, the orthonormal tetrad components are 

1 
ho ~ = hl = h2 2 = h3 3 - 

A('r) 

Now the Dirac matrices ~/~ are 

1 
"~" = - -  ~"8,~ 

A('r) 

and the Dirac equation (3.7) is rewritten as 

(3.9) 

(3.10) 

(3.11) 

[i('r/~ + r + "r/202 + ~/303) - gA(T)/~]III = 0 (3.12a) 
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where 

~l t = A3/2('r)O (3.12b) 
As mentioned above, in the introductory section, the interaction term 

behaves like a mass term. The mass acquired by ~ in the state/~ = 0 is zero, 
but has a definite value {gT~ in the state R = Re. 

4. SOLUTION OF DIRAC EQUATION 

For the purpose of second quantization, the general wave solution of 
the Dirac equation (3.12) can be written for discrete modes k and spin s as 

vii" = X X (bk,sV~tlk.s + dt-k.~nk.,) (4.1a) 
s=~l  k 

XItt = X X (~Ik,s'yob~, s "~- VIIk.s'yOd-kd ) ( 4 .1b )  
s = - I  k 

where 

with 

(4.2a) 

(4.2b) 

/21 ---- U_ I ---- 

~1 = and ~-I = (4.3) 

In (4.1), b~., (bk.,) are creation (annihilation) operators for positive-energy 
particle and d-k~ ( d ~ j  are creation (annihilation) operators for negative- 
energy particles. 

Now connecting equations (3.12) and (4.1), one gets the following 
equations for a particular mode k and spin s at temperature T < < T~: 

( i~/~176 + i ' " a " - l g A T ~ l * " ~ = O z  / , (4.4a) 

I-gAT~ ~tl~, (i~lO00 + i~laOa -- 2 ) = O (4.4b) 

and their complex conjugates. 
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Operating with ( - i~~ - i~aQ - �89 on equations (4.4) from the 
left and using equations (4.2) as well as 

9~ = ~u,, 5,~ = ~a,, e = __+ 1 (4.5) 

one gets 

d2fk,s + (k 2 + ieg gET2 . 2 \ 
d'r 2 \ T Tc aoA + = - - ~  A )fk., 0 (4.6a) 

and 

d2gk,s + (k 2 + ieg g2T2 A2 ~ 
d, r2 -~- T~ aoA + - - ~  )gk,s ----" 0 (4.6b) 

As gk., = f-~.,, we shall concentrate on equation (4.6a). It has been discussed 
in Section 2 that the cosmological model expands according to the law given 
by (2.21) in the state I/~1 = 1T~ when t > tc - 0.89. 

Now, using equations (2.21) and (3.8), one gets 

1 
A(x) - (4.7a) 

Hx 

with 

and 

H2 - Tc 
24xl (4.7b) 

1 "r - e -n(t-ta (4.7c) 
Hac 

Now, with A('r) given by equation (4.7a), the differential equation (4.6a) 
is rewritten as 

d 2 ( iegTc gZTZ~ ~r 
~ r  2J~'s + k2 + 2 - ~  + 4--H~x2y k,s = 0 (4.8) 

From equation (4.7c) it is obvious that 

-oo < , r  < 0 

corresponding to -oo < t < oo. 
In the limit "r ---> -0% equation (4.8) reduces to 

(4.9) 
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d 2 
d, r2 A~ + ~A,, = 0 

which yields positive- and negative-energy normalized solutions (2k)-1/2e - ~  
and (2k)-~ne i~, respectively. 

The ordinary differential equation (4.8) yields the general solutions 

fk,+l = T V e " i k ' r  IFl(1);  2v; ~2i/cr) (4.10a) 

and 

where 

fk,-I = 'r~e~-i~(T-2ik'r) I-2~ lFl(1 -- v; 2 -- 2v; 7-2ik'r) (4.10b) 

l{ [4[g2T2ci~gT~l'r~ } 
- , ,=~ 1 ___ 1 -  \Tn--~-+-Th---/j 

'[ ~--- 1 _ + i (4.10c) 
2 

(as gT~ > >  H) and i Fl(a; b; x) is the confluent hypergeometric function. 
We know a useful identity connecting the Bessel function and the conflu- 

ent hypergeometric function (Whittaker and Watson, 1969) (1 / (z/2)l e • Fi ~ + l; 1 + 2l; ~2 i z  (4.11) Jl(z) -- (1 + /)L/2 1 

Using the identity (4.11), we can rewrite the solutions (4.10) as 
( :-~rd2m+U2)r (gTr . \  "1112 

j~,+t = "r In 1 + ~ ) J  J_*(grd2H+i~)( ) (4.12a) 

and 

[ ::" A , - I  = TIn(~2i )  ~(grdn+Ok~'~r~tt+u2)2+-~rd2H+u2) 1 + ~2H + 

X J . z . (gTd2H+U2) (k ' r )  

The normalized forms of equations (4.12) are 

(4: A )  + 1 ~(  +- 1 - O~14~-7-ilrgTcl4H_ 112I [1..,.'~ 
= ~ e t J+. (gTcl2l'l+il2)~ n" ~ 1 

and 

(4) ̀ ~ f ~-  1 ~( ~. 1 + i)~r14 e+-ilrg Tc14HTl12 J r kT X 
: r ~-(gTcl2H+il2)~. ] 

(4.12b) 

(4.13a) 

(4.13b) 



148 Srivastava and Sinha 

Using the asymptotic form of  the Bessel function (Pipes and Harvill, 1970) 

f 

one can easily see that 

J'(2k)-l/2e-ik" 
li_~m=A.+l = 1(2k ) - i / 2e i ,  

"rrl 

2 4) 

for k > 0  
for k < 0  

We get the same result for fk,-i- This signifies that the normalization j~,s(/er) 
has been done correctly for "r ---> -oo. 

Moreover, we also find that the Wronskian of equation (4.8) is constant. 
This means that the above normalization of  the solution is correct for all "r 
in the interval mentioned. Thus equations (4.13) are normalized solutions for 
-oo < .r _< O. 

Now, one can also write 
I/2 

['IT'~ e(+_l_Owl4eT.i.ngTd4HTl/2j+ i_k,rx 
gk,+t = f-k.+, = ~ 4 ] -(gTcl2H+i/2)' ] 

# 

(4.14a) 

and 

( 4 ) l/2~(T- l + O~rl4~+-i~rgTcl4HTl/2J : k~~ gk,-I -= f-k ,-I  = c e ~-(gTcl2H+il2)[-- ) 

For small values of  z, 

(4.14b) 

For the purpose of analyzing the asymptotics of  the solutions as t ---> __+~, 
the solutions given by (4.13) and (4.14) are written as 

I Afflr2Ju2(gTjn+o(ier) as t ---> o0 

J~,+l  = [Ai.rl/2j_i/2(gTc/n+i)(k.r) as t ---> -oo 
(4.16a) 

[ A2xl/2Ji/2(grdn+o(kx) as t ---> 

fk,-1 : [A2T1/2j_l/2(grdH+i)(kT) as t ---> - -~  
(4.16b) 

= IA:rl/2J1/2cffdu+o(-k'r) as t ---> oo 

gt,+l [Al,rlr2j_l/2C~rdn+o(_ler) as t ---> -oo  
(4.16c) 

( z /2 )  t 
Jr(z) ~-- (1 +/)1/2 (4.15) 
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= ~A2"rl/2JIr2(grdH+o(--kx) 
gk,-1 [A2 "~I/2J- u2cgrdH+i)(-k'r) 

In equations (4.16) 

[ \1/2 

AI = ~ 4 )  e(+-I-i)'rrl4e~i~gTd4H 

a2=(4)l/2e(~l+i)~/4e+-i~gTd4H 

and 

as t---> 
(4.16d) 

as t ----> - ~  

(4.17a) 

(4.17b) 

"r = - (24-q3/Tc)1/4e- t4(,-tc) (4.17c) 

Using the normalization condition for �9 as (Birrell and Davies, 1982) 

('~k,s, at/k',s') = f d3x aIr--k,s~lO~xrk',s ' = ~ss'~/~ ' 
Jt = c o n s t  

one can normalize atPlk,s and ~xt~.~ as 

- -1/8 

attik,s = - ~  fk,se-ik'~ us (4.18a) 

i { T c ~  1/8 
'tltiik, s = - ~  \ 2--~3 } gk,seik.~x'~a s (4.18b) 

where V is the volume of 3-dimensional space, and fk.~ and gk,s are given by 
equations (4.16). 

5. PRODUCTION OF PARTICLES 

The question of the production of spin-�89 in radiation-dominated 
models of the universe has been addressed (Parker, 1971, 1977; Audretsch 
and Schafer, 1978) considering free spinor fields. Here we are interested in 
the production of Dirac particles in the exponentially expanding cosmological 
model (caused by the process of spontaneous symmetry breaking with temper- 
ature-dependent Higgs-like potential for the scalar field/~) as a consequence 
of the interaction of spinors with riccions. 
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To study the spectrum of created spin-�89 particles, we go over to quantum 
field theory in the Fock space formulation. The in-vacuum state (as t ---> - ~ )  
10)i n is  defined as 

b~,nl0>in = din  ta\ -k., ' , / ,  = 0 (5.1a) 

(010)i . = 1 (5.1b) 

The out-vacuum state (at t --) +oo) 10)out is defined as 

out 0)o-t 0 (5.2a) bk., I 0)o~ = ."~ = 

(O[O)out= 1 (5.2b) 

In the in-region as well as the out-region the decomposed form of �9 can be 
written as 

~/,_-- Z ~ in in in t in 

s = •  k 

out out /../out "~talrout 1 = ~ ~] [bk.,~ik: + (5.3a) ~,tZ-k,-s)  "x l l(-k,-s)J  
s = •  k 

'~IJt Z Z in t in t /aT, in ~t.4in 1 = [(~u,.0 (bk~) + ~nk~)  "-k.-,J 
s = •  k 

= ~ ~ [(xI~'x[t)t(b~,.~t)t + (xtr~176 (5.3b) 
s = •  k 

The Bogoliubov transformations for Fermi fields are (DeWitt, 1975) 
/,.out in in = d_k._,13~ (5.4a) Uk,s bk.s(Xk,s + 

(/.,out'~t = (x~.,(b~n)t + 13~.,(di_nk_,)t (5.4b) ~k,s ) 

/..tout ~t bin ~ in t = (d-k.-,) 13k: (5.4c) ~,U--k,-s) k,s k,s "at- 

d~ = ctff.,(b~:) + + [3~',di-nk.-~ (5.4d) 

The Bogoliubov coefficients otk., and [3k., satisfy the condition 

with 

and 

2 + 113k,,I 2 = 1 ( 5 . 5 )  

= i d3x altin ,looutt (5.6a) 
Otk's Jt=tl(const) Xlk ' sWlk ' s  

( 
[~k.~ l d3x aT, in .t.outt 

ur II(-k,-s)WH(-k,-s) 

Jt = t I (const) 
(5.6b) 
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as anticommutation relations, complete relations, and orthogonality condi- 
tions are defined as the t = const hypersurface. 

Using equations (4.2), (4.16), and (4.17), we obtain 

_('tr14)e+S'~t2[--(241"qTc)l/4e-U~tt-'c)] .-' (k) -i 
etk,~ -- [1 - - ~  Z ~  Z ~ T ~ ]  .a (5.7a) 

(qr14)e-=r2[-(241"qT~)t/4e-U~'~-t~)] '-' ( ~ ) - '  

Equations (5.7) yield 

I k.sl 2 = e~(241"qTc)lr2e-2U<tt-'c) 
8(1 + 24"qg2Tc) 

and 

{ 11.689 - cos['trg(24Xl)l/2Tc] } (5.8) 

e-S~(24/,qT~.)l/2e-2ttttl-,c) 
I [3k.s 12 = 8(1 + 24~qg2Tc) { 11.689 - cos['rrg(24"q)lrZTc] } (5.9) 

All the above analysis in this section is based on the approximation of 
the Bessel function (for small arguments) given by equation (4.15). So, modes 
k are restricted by the condition 

k 2 < <  (TJ24"q3) 1/2 exp[2(tt - tc)(TJ24Xl) It2] (5.10) 

As a result, 113k., I 2 given by (5.9) is independent of k, so it is true for all k 
subject to the inequality (5.10). 

Now using (5.5), one can compute the time tl as 

"24 ,it2 1 cos s  
t~ = t~ + ~-H In 4(1 + 24~lg2T~) 

• { 11.689 - cos['trg(24~l)t12Tc)] }) (5A1) 

This is a very good and important result, which says that only at t~ given by 
equation (5.11) is equation (5.5) satisfied by ctk.s and 13k.~. Physically, this 
means that the production of spin-�89 fermions (Dirac particles) is possible 
only at time tl explicitly defined by equation (5.11). 

Since tl > tc, equation (5.11) yields one condition on T~ as 

4(rlTJ24)la(1 + 24"qg2T~) > 12.689 cosh "tr (5.12) 
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Using equation (2.13) in the inequality (5.12), one gets 

96 m3/2 > 12.689 cosh [h3/4\ 

where m is the mass of the Ricci field. If  G is taken equal to the Newtonian 
gravitational constant, which is M~ -2 (in natural units), one finds the condition 
on the coupling constants ct, 13, k, and g as 

g2 < 10-27[h(5ot q_ 129)]3/4 (5.14) 

The absolute probability of creation of no particles in a mode is given 
by (Parker, 1977; Mottola, 1985) 

Iout(0[0>inl 2 = ~ I~,~1-2 

= 17 )~k,+,)21~,-,/2 
k 

- exp(~ lnl,~,,+,l-21~k_,l -~) 
k 

= exp[2~(0)lnl~,k.+ll-21~_,l  -~3 

= exp(-lnl~k.+ll-2la,_,1-2) 

l 
- ( 5 . 1 5 )  

4 cosh 2 "rr 

which is true for all modes constrained by the condition (5.10). 
Here we have used equations (5.8a) and (5.11), and 4(0) is the Riemann 

zeta function, ~(v) at v = 0, which is divergent but evaluated equal to _ l  2 
through analytic continuation. 

The decay of  the 10)in state per unit volume is given by 

r = - v ; ,  )nlo~,<OlO>~l 2 

3 ['qT~'~ 14 In 4 cosh 2 "IT 

2"tr //\-~-] exp[3(h - tc)T~n124"q] - 1 (5.16) 

= [(121rr)(TJ24"q) 5/4 ln(4 cosh 2 "rr)(1 + 24xlg2Tc) 3/2] 

• [ { cosh "rr(24"q/T~)u2[ 11.689 - cos ~rg(24"qT~)m] } 3/2] 

- 8(1 + 24~g2T~)3r2] -1 (5.17) 

Using the inequality (5.12), one can find that 
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(Tc'q)2(l + 24"qg2Tc) 312 In(4 c o s h  2 "tr) 

F = 48"rr cosh "tr[l 1.689 - cos "rrg(24"qTc) In] (5.18) 

The in-vacuum state will decay, when particles will be created. So, decay 
per unit volume of the in-vacuum state is equivalent to the creation of particles 
per unit volume. Thus, the equality (5.18) shows that the creation of particles 
will be very high for modes of magnitude 

cosh I/2 Tf{ 11.689 - cos['rrg(24"qTc)] in } 1/2 
[kl < <  2(1 + 24"qg2Tc) ~n (5.19) 

which can be obtained by using inequality (5. I 0) and equation (5.11). Using 
inequality (5.14) and the definition of T~ given by equation (2.13), we can 
modify the inequality as 

I kl < <  4 GeV (5.20) 

(here the gravitational constant has been taken equal to M ;  2, the Newtonian 
gravitational constant). This result is very interesting, as it says that particles 
of mass < <4  GeV will be created at time tt > tc. Observed elementary spin- 
& particles have mass <-1 GeV. So, the result (5.20) is consistent with 2 
observations. 

Using the approximate form of the Bessel function for large arguments, 
which is given as 

Jr(z) = ('trz/2)-in cos 2 - l-~ - 

one can easily find that the probability of creation of particles is almost 
negligible in high modes for which 

c o s h  It2 'n" 
Ikl --> 2(1 + 24"qg2TJ  n [11.689 - c o s  ~rg(24"qTc)lr2] 1/2 (5.21) 

Thus, on the basis of the above analysis, we find that a large amount 
of energy produced due to the inflationary phase of the model will flow in 
the out-region, which may increase the entropy of the later universe. 
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